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A numerical method of calculating the temperature field in a fluid
flow with variable physical characteristics is examined. The condi~
tions of convergence and stability of the difference equation of heat
propagation are investigated. As an example, certain results of cal-
culations of a two-dimensional temperature field, performed on a
digital computer, are presented.

Consider the transfer of heat in a fluid flow when
the parameters A, ¢, y and the velocity w are func-
tions of position, time, or temperature. A numerical
method of integration of the differential equation of
heat propagation

[)—(CY—I)zdiv(Xgradt) 1)
dt

was described in [1, 2]. This paper is a continuation
of the author's previous work, It examines the finite
difference equation corresponding to the process of
propagation of heat in a fluid flow with variable physi-
cal characteristics and investigates the conditions of
convergence and stability. We transform (1) to the
following form:
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To obtain the finite-difference approximation of (2),
we represent the partial derivatives in the form of
difference relations:
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Here I and Iy are the space and time steps along the
axes 7 and Xy k=1, 2, 3), t=t (X;, X3 X3, T), tr41=
=t (xy, X3 X3, T+I)=t (‘r+l), tk=t (xx +hy), tx=
=t (xi — hy).

Values of approximation errors € can be calculated
from Taylor's interpolation formula. Their orders are
respectively

ee=0(1); e, = O0(h); ey = O(R); ec;=0(1). (7)

Taking account of (3)—(6), we can write equation
(2) in the following difference form:
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The function Uy approximates the real value of the
temperature t,y; with error (§ =t — u):
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as follows from (7) is of the order of O(hf(, D).

Proceeding to an investigation of the convergence
of the difference equation (8) to the differential equa-
tion (2), we show that this is in fact the case if the
conditions
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are satisfied. The relations (11) establish that the
order of I must be no less than

We denote by 6, a positive number whichis less than
than the greatest absolute value of ¢ for all nodes of
the space network at time 7. Then from (9) there fol-
lows the inequality
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With account for (11) and (12), we rewrite (13) as
follows:
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from which there immediately results
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If it is assumed that 7 = ml is some bounded quan-
tity, then

(1-+-2plyn < 12°

also has some finite value. Since the quantity 6, can
be caleulated with any degree of accuracy [2], from
inequality (14) it follows that

-/ Chs and ]mz &~ 0, (15)
where C is a positive number which does not depend
on hy.

Thus, given conditions (11), (12), the difference
equation (8) permits one to calculate the temperature
function with an error of order h12<. From (15) there
directly follows the convergence of the difference
equation (2).

In finding the necessary conditions of stability of
the difference equation (8), we suppose that the dis-
tribution function of round-off errors 7, which is given
by the equation
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Ny is the number of steps hy, included in the projection
of the region in question on the axis xy; np =1, 2, ...,
Nk - L. '

We represent the expression for the function 7 in
the form of a series (17), in which Ty, is replaced
by Ty. After substitution of n in (16) we immediately
obtain

Ty = ()", (18)
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From (18) it follows that Ty will be bounded if
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We set Cik = 1 and denote by « the value of uyxhy,
at which the function |¢n| is a maximum. Then the in-
equality (19) can be transformed to

(1= M)t —(1-—cosu) 2 (\ B, )( 20)
Tl
'?&
Y B i1+ NL
k=1 :

The inequality (20) holds if condition (11) is satis-
fied. Thus, the conditions of stability impose on the
choice of space and time steps the same limitations
as the conditions of convergence of the difference
equation (18). They serve as a basis for constructing
the space network and choosing the step [ for numeri-
cal calculation of the temperature field in a fluid flow.
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Nonsteady-state temperature field in a slot along the
plane y/y. =0.75: 1,2,3,4,5,) respectively, at times
T/3600 =0,5; 1; 1,5; 2; 3, 52 sec., Curve 5 relates

to conditions close to steady-state,

In conclusion, by way of example, we shall examine
the problem of a nonsteady-state temperature field in
a fluid flow moving in a slot-type channel. it is as-
sumed that the motion is laminayr, so that the velocity
profile in the channel is parabolic:

W, ne 2w, [ {0y VL

The following initial data are assumed: t(x, y, 0) =
=0;t (x, ¥o, 7)—t(x, -y, )=0;t {0, y, 7)=1;

(3%t (b, y, 7))/3x%= 0 (b is the length of the channel);
By = B, = 0.25; Cppax = (2wehxey)/2X = 1; hy/yy =
= hyAmO =0,25; 1= 45 sec; wy = 1/3600 m/sec.
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The system consisting of (8) and the finite-differ-
ence approximations of the boundary conditions is
solved by the pivot method at each moment of time
7 = ml. Successive transition from the layer mi to
the layer (m + 1) determines the change of the tem-
perature function in time, The figure presents the
results of calculations performed on a digital compu-
ter. )

As these calculations show, violation of conditions
(11) and (12) usually makes it impossible to obtain the
expected results.

NOTATION

p) positive constant; B) positive number which satisfies the condi~-
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tion B = R; &) value of &, at time 7 = 0; N) a certain constant;
wo) mean velocity; 2Iy) width of channel.
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